Hey there! A simple explanation is below.
Answer:
D) is a single phase homogeneous mixture.
Explanation:
A solution is a form of homogenous combination made up of two or more components in chemistry. A solute is a material that is dissolved in another material, known as a solvent, in such a combination. The mixing of a solution takes place at a scale where the effects of chemical polarity are present, resulting in solvation-specific interactions. In most cases, the solution is in the condition of the solvent, because it is most common in the mixture.
1 mol of Br = 79.9 g
15.7 g / 79.9 g = 0.196 moles of atoms
Answer: -
Concentration of PbI₂ = 1.5 x 10⁻³ M
PbI₂ dissociates in water as
PbI₂ ⇄ Pb²⁺ + 2 I⁻
So PbI₂ releases two times the amount of I⁻ as it's own concentration when saturated.
Thus the molar concentration of iodide ion in a saturated PbI₂ solution = [ I⁻] =
= 1.5 x 10⁻³ x 2 M
= 3 x 10⁻³ M
PbI₂ releases the same amount of Pb²⁺ as it's own concentration when saturated.
[Pb²⁺] = 1.5 x 10⁻³ M
So solubility product for PbI₂
Ksp = [Pb²⁺] x [ I⁻]²
=1.5 x 10⁻³ x (3 x 10⁻³)²
= 4.5 x 10⁻⁹
Water is often referred as a <span>universal solvent </span>because it is capable dissolving much more solutes as compared to any other solvent. This is because, water is a high polar molecule. In water, H has partial positive charge while O has partial negative charge.
Due to this, water favors dissociation of molecules into positively and negatively charged ions. Positively charge ions gets attracted towards oxygen i.e. negatively charges, while negatively charged ions get attracted towards positive end of water molecule.
However, it is worth nothing that, despite water being referred as universal solvent, many compounds are insoluble or partially soluble in water. For instance, most of the hydroxide displays poor solubility in water.
You would expect snow to fail at the peak or the top because the weather is coldest there.