Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M
<span>The atoms or molecules attain enough kinetic energy to overcome any intermolecular attractions they have. Since there are no longer any attractive forces between the particles, they are free to drift away into space. The same sort of thing happens in ordinary evaporation, but only at the surface. </span>
Answer:
0.125 mg
Explanation:
<em>The correct answer would be 0.125 mg</em>
<u>According to the conversion factor, one milligram of a sample is equivalent to one thousand micrograms of the same sample.</u>
milligram = 
microgram = 
Hence,
1 milligram = 1000 micrograms or 1 microgram =
milligram
Therefore, 125 micrograms will be:
125/1000 = 0.125 milligram