Iodine 131 is a radioisotope with a very short half-life of 8.02 days, making it highly radioactive. Frequently used in small doses in thyroid cancers therapies, it is also one of the most feared fission products when accidentally released into the environment. Radiotoxicity of iodine 131.
Radioactive material obeys 1st order decay kinetics,
For 1st order reaction, we have
k =

where, k = rate constant of reaction
Given: Initial conc. 100, Final conc. = 6.25, t = 18.9 hours
∴ k =

= 0.1467 hours^(-1)
Now, for 1st order reactions: half life =

= 4.723 hours.
(missing in Q) : Calculate the concentration of CO & H2 & H2O when the system returns the equilibrium???
when the reaction equation is:
C(s) + H2O(g) ↔ H2(g) + CO(g)
∴ Kc = [H2] [CO] / [H2O]
and we have Kc = 0.0393 (given missing in the question)
when the O2 is added so, the reaction will be:
2H2(g) + O2(g) → 2H2O(g)
that means that 0.15 mol H2 gives 0.15 mol of H2O
∴ by using ICE table:
[H2O] [H2] [CO]
initial 0.57 + 0.15 0 0.15
change -X +X +X
Equ (0.72-X) X (0.15+X)
by substitution:
0.0393 = X (0.15+X) / (0.72-X) by solving for X
∴ X = 0.098
∴[H2] = X = 0.098 M
∴[CO] = 0.15 + X
= 0.15 + 0.098 = 0.248 M
∴[H2O] = 0.72 - X
= 0.72 - 0.098
= 0.622 M