Answer : The oxidizing element is N and reducing element is O.
is act as an oxidizing agent as well as reducing agent.
Explanation :
An Oxidizing agent is the agent which has ability to oxidize other or a higher in oxidation number.
Reducing agent is the agent which has ability to reduce other or lower in oxidation number.
The given reaction is :

act as an oxidizing agent.
The oxidation number of N in
is calculated as:
(+1)+(x)+3(-2) = 0
x = +5
And the oxidation number of N in
is calculated as:
(+1)+(x)+2(-2) = 0
x = +3
From the oxidation number method, we conclude that the oxidation number reduced this means
itself get reduced to
and it can act as an oxidizing agent.
act as a reducing agent.

The oxidation number of O in
is calculated as:
(+1)+(+5)+3(x) = 0
x = -2
The oxidation number of O in
is Zero (o).
Now, we conclude that the oxidation number increases this means
itself get oxidized to
and it can act as reducing agent.
Each of the following are descriptions of physical properties except C. Flammability
Answer:
Explanation:The final homogenous solution, after cooling it to 40°C, will contain 47 g of potassium sulfate disolved in 150 g of water, so you can calculate the amount disolved per 100 g of water in this way:
[47 g of solute / 150 g of water] * 100 g of g of water = 31.33 grams of solute in 100 g of water.
So, when you compare with the solutiblity, 15 g of solute / 100 g of water, you realize that the solution has more solute dissolved with means that it is supersaturated.
To make a saturated solution, 15 grams of potassium sulfate would dissolve in 100 g of water.
Read more on Brainly.com - brainly.com/question/5143785#readmore