Answer:
Volume
Explanation:
Density:
Density is equal to the mass of substance divided by its volume. In order to find the density of earth when mass is given we have to calculate its volume. The volume of earth is calculated by using the volume formula for sphere. i.e 4/3 π r³. we also require radius to find the volume and we know that
Diameter = 2 × radius
The diameter of earth equator is 12756.75 Km. So we calculate the radius by dividing the diameter by 2. Then by putting the value of radius in 4/3 π r³ we will get the volume and then we can calculate the density of earth.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Answer:
Option C. 13.5 atm
Explanation:
From the question given above, the following data were obtained:
Pressure of Neon (Pₙₑ) = 4.1 atm
Pressure of Argon (Pₐᵣ) = 3.2 atm
Pressure of nitrogen (Pₙ₂) = 6.2 atm
Total pressure (Pₜ) =?
The total pressure in the container can be obtained by adding the pressure of the individual gases. This is illustrated below:
Pₜ = Pₙₑ + Pₐᵣ + Pₙ₂
Pₜ = 4.1 + 3.2 + 6.2
Pₜ = 13.5 atm
Therefore, the total pressure in the container is 13.5 atm
Answer : The mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Explanation : Given,
Mass of oxygen in sulfur dioxide = 3.49 g
Mass of sulfur in sulfur dioxide = 3.50 g
Mass of oxygen in sulfur trioxide = 9.00 g
Mass of sulfur in sulfur trioxide = 6.00 g
Now we have to calculate the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide.
Mass of oxygen per gram of sulfur for sulfur dioxide = 
Mass of oxygen per gram of sulfur for sulfur dioxide = 
and,
Mass of oxygen per gram of sulfur for sulfur trioxide = 
Mass of oxygen per gram of sulfur for sulfur trioxide = 
Thus, the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
The electromagnet and the permanent magnet -- interact with each other as any two magnets do. The positive end of the electromagnet is attracted to the negative pole of the permanent magnetic field, and the negative pole of the electromagnet is repelled by the permanent magnet's negative pole