There are 3 possible ways of determining pH.
1. A pH meter, 2. Litmus paper/ pH test strips or 3. Titrations.
1. A pH meter works by sending a small electric current through the solution. An electrical current can only be created if there are free-moving particles such as H+ ions from an acid or OH- ions from a base. The pH meter can determine the pH by how high the conductivity is.
2. Litmus Paper or pH test strips are strips that turn a specific colour under a specific pH. This colour can then be compared to a colour chart which will tell you the pH. The downfall of this method is that the red ink will stain the strip and you will be unable to get an accurate reading.
3. A titration is the best method, if done properly, for determining pH.
Answer:
b)
Explanation:
the data for the average height of the plants in all three trails contains error
Answer: V2= 15.0403226 Liters
Explanation:
Use V1/T1=V2/T2
Make sure you change the degrees Celsius to Kelvin. (Kelvin = degrees Celsius +273)
10.0L / 248 K = V2/ 373 K
Cross multiply V1 and T2 and divide by T1
(10.0 L)( 373K)/ 248 K = V2
V2= 15.0403226 Liters (Kelvin cancels out)
Answer:
work done = 750 J
Explanation:
Given data:
Force on object = 50 N
Distance covered = 15 m
Work done = ?
Solution:
W = F. d
W = work done
F = force
d = distance
Now we will put the values in formula.
W = 50 N × 15 m
W = 750 N. m = 750 J
The balanced chemical reaction would be:
FeS(s)+2HCl(aq)→FeCl2(s)+H2S(g)
We are given the amount of the reactants to be used for the reaction. We use these amounts. First, we determine the limiting reactant of the reaction. From the data, we can say that FeS is the limiting ad HCl is the excess reactant. We calculate as follows:
Amount of HCl used: 0.240 mol FeS x 2 mol HCl / 1 mol FeS = 0.48 mol HCl
0.646 - 0.48 = 0.166 mol HCl left