Explanation:
Given that,
(a) Frequency, 
All electromagnetic wave moves with the speed of light. It is given by :


(b) Frequency, 
All electromagnetic wave moves with the speed of light. It is given by :


Hence, this is the required solution.
Answer:
- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.
- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.
If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.
A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:
- The distance is the circumference of the circle
- The displacement is zero, because the final point corresponds to the initial point
Answer:
Opposition of passing a electric circuit
Answer:
3.62 m and - 1.4 m
Explanation:
Consider a location towards the positive side of x-axis beyond the location of charge Q₂
x = distance of the location from charge Q₂
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = 1.62 m
So location is 2 + 1.62 = 3.62 m
Consider a location towards the negative side of x-axis beyond the location of charge Q₁
x = distance of the location from charge Q₁
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = - 1.4 m
Answer:
Since Fluorine is very electronegative, it can easily absorb the electrons of other elements. Since it sucks up electron, this gives Fluorine an excess electron thus making it a negative ion F-.
Explanation:
because it is