Answer:
The following formula is used to calculate the speed or velocity of a wave. V = f * w Where V is the velocity (m/s) f is the frequency (hz)
they're experts in iron metallurgy
The bantu was originated from the southern part of Africa ( round republic of Congo) , and has been the expert of utilizing iron among the ancient tribe
Mostly they use it for their Agricultural system ( such as their Irrigation system, for their agricultural tools, etc)
<span />
Answer:
here:
Explanation:
The changes in temperature caused by a reaction, combined with the values of the specific heat and the mass of the reacting system, makes it possible to determine the heat of reaction.
Heat energy can be measured by observing how the temperature of a known mass of water (or other substance) changes when heat is added or removed. This is basically how most heats of reaction are determined. The reaction is carried out in some insulated container, where the heat absorbed or evolved by the reaction causes the temperature of the contents to change. This temperature change is measured and the amount of heat that caused the change is calculated by multiplying the temperature change by the heat capacity of the system.
The apparatus used to measure the temperature change for a reacting system is called a calorimeter (that is, a calorie meter). The science of using such a device and the data obtained with it is called calorimetry. The design of a calorimeter is not standard and different calorimeters are used for the amount of precision required. One very simple design used in many general chemistry labs is the styrofoam "coffee cup" calorimeter, which usually consists of two nested styrofoam cups.
When a reaction occurs at constant pressure inside a Styrofoam coffee-cup calorimeter, the enthalpy change involves heat, and little heat is lost to the lab (or gained from it). If the reaction evolves heat, for example, very nearly all of it stays inside the calorimeter, the amount of heat absorbed or evolved by the reaction is calculated.
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
Answer:
![[base]=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.28M)
Explanation:
Hello,
In this case, by using the Henderson-Hasselbach equation one can compute the concentration of acetate, which acts as the base, as shown below:
![pH=pKa+log(\frac{[base]}{[acid]} )\\\\\frac{[base]}{[acid]}=10^{pH-pKa}\\\\\frac{[base]}{[acid]}=10^{4.9-4.76}\\\\\frac{[base]}{[acid]}=1.38\\\\](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7BpH-pKa%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7B4.9-4.76%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D1.38%5C%5C%5C%5C)
![[base]=1.38[acid]=1.38*0.20M=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D1.38%5Bacid%5D%3D1.38%2A0.20M%3D0.28M)
Regards.