Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
Velocity is speed and the direction of the speed. Acceleration is the rate at which Velocity is changing, and the direction in which it's changing.
Answer:
D
Explanation:
Gene flow is the transfer of genetic variation from one population to another
Answer:
31.42383 m/s
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
= Coefficient of kinetic friction = 0.48
s = Displacement = 0.935 m
= Mass of bean bag = 0.354 kg
= Mass of empty crate = 3.77 kg
= Speed of the bean bag
= Speed of the crate
Acceleration


From equation of motion

In this system the momentum is conserved

The speed of the bean bag is 31.42383 m/s
"Accuracy" would be the best option from the list regarding the property of a measurement that is best estimated from the percent error, since the higher the error is the lower the accuracy.
Explanation:
When taking scientific measurements, it's vital to be each correct and precise. Accuracy represents however shut a mensuration involves its true price. This can be vital as a result of unhealthy instrumentality, poor processing or human error will result in inaccurate results that aren't terribly getting ready to the reality.