<em>number of waves that pass a given point in one second is called <u>frequency..</u></em>
Plz help me get out of this school im so tired im begging anybody i would do anything
Answer:
a) In order to catch the ball at the level at which it is thrown in the direction of motion.
b)Speed of the receiver will be 7.52m/s
Explanation:
Calculating range,R= Vo^2Sin2theta/g
R= (20^2×Sin(2×30)/9.8 = 35.35m
Let receiver be(R-20) = 35.35-20= 15.35m
The horizontal component of the ball is:
Vox= Vocostheta= 20× cos30°
Vox= 17.32m/s
Time taken to coverR=35.35m with 17.32m/s will be:
t=R/Vox= 35.35/17.32
t= 2.04seconds
b)Speed required to cover 15.35m at 2.04seconds
Vxreciever= d/t = 15.35/2.04 = 7.52m/s
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:


