Answer:
Explanation:
El impulso aplicado a la pelota produce una variación en su momento lineal.
J = m (V -Vo)
Conviene elegir positivo el sentido de la velocidad final.
J = 0,100 kg [40 - (- 20)] m/s = 6 kg m/s
Saludos Herminio
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Answer:
6 significant figure
Explanation:
The digits 111328 all are 6 figures with no figure being zero, neither zero after the other digits. In this case, all the numbers are significant and since they are only six numbers, then this is a six significant figure. In case we add another zero after digit 8, the zero is not significant but if added either infront of 8 or 2, the zero becomes significant.
Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.
Answer:
= 591.45 T/s
Explanation:
i = induced current in the loop = 0.367 A
R = Resistance of the loop = 117 Ω
E = Induced voltage
Induced voltage is given as
E = i R
E = (0.367) (117)
E = 42.939 volts
= rate of change of magnetic field
A = area of loop = 7.26 x 10⁻² m²
Induced emf is given as


= 591.45 T/s