Answer:
Explanation:
radioactive decay, planetary orbit, speed of light, etc.
The. 3rd one the ram of the bus
Answer:
the net toque is τ=8.03* 10⁻⁴ N*m
Explanation:
Assuming the disk has constant density ρ, the moment of inertia I of is
I = ∫r² dm
since m = ρ*V = ρπR² h , then dm= 2ρπh r dr
thus
I = ∫r²dm = ∫r²2ρπh r dr =2ρπh ∫r³ dr = 2ρπh (R⁴/4- 0⁴/4)= ρπhR⁴ /2= mR²/2
replacing values
I = mR²/2= 0.017 kg * (0.06 m)²/2 = 3.06 *10⁻⁵ kg*m²
from Newton's second law applied to rotational motion
τ= Iα , where τ=net torque and α= angular acceleration
since the angular velocity ω is related with the angular acceleration through
ω= ωo + α*t → α =(ω-ωo)/t = (21 rad/s-0)/0.8 s = 26.25 rad/s²
therefore
τ= Iα= 3.06 *10⁻⁵ kg*m²*26.25 rad/s² = 8.03* 10⁻⁴ N*m
Hello!!
Here we have a simple matter of conservation of energy. ME=PE+KE.
At point A we have PE=mgh and KE=1/2mv^2. At point A all we have is PE since the coaster isn’t rolling yet. But by conservation of energy, we know that it will have enough energy to roll down and get to and equal height on another hill. Providing we are neglecting friction and drag and resistance forces which we are in this case. So we can conclude that the KE will be greater at Point B since ME=PE+KE and for ME to remain the same and we know the PE is less on lower hill, so we can conclude that KE on lower hill is greater to keep ME the same and have conservation of energy.
Hope this helps you understand the concept!! Any questions please just ask!! Thank you so much!!
Answer:
If it is triple it means we multiply it by 3 then it is 36.3 m/s/s