Explanation:
It is given that,
The angle of projection is 60 degrees
Initial velocity of the ball is 120 m/s
We need to find the time taken to get to the maximum height and the time of flight.
Time taken to reach the maximum height is given by :

g is acceleration due to gravity

(ii) Time of flight,

So,

Hence, this is the required solution.
If the resistors are arranged in a shape of a square, then they are in a series type of circuit. This circuit arrangement is a non-branching, one-way flow of electrons. The total resistance in a series circuit is the summation of the individual resistances, If you place the ohmmeter (measures resistance) on two non-adjacent sides, then, you are measuring the resistance of two of the resistors.
Resistance = 2(1 kΩ) = 2 kΩ
Answer:
1.37 ×10^-3 T
Explanation:
From;
B= μnI
μ = 4π x 10-7 N/A2
n= number of turns /length of wire = 1700/0.75 = 2266.67
I= 0.48 A
Hence;
B= 4π x 10^-7 × 2266.67 ×0.48
B= 1.37 ×10^-3 T
Answer:
56 kg
Explanation:
The change in potential energy of the man is given by:

where
m is the man's mass
g is the gravitational acceleration
is the change in height of the man
In this problem, we have:
is the gain in potential energy
g = 9.8 m/s^2 is the gravitational acceleration
is the change in height
Re-arranging the equation and substituting the numbers, we find the mass:

Answer:
It would mean less transpiration and the groundwater would start to make a landslide with no tree root to hold the earth in place