False h they gg be DVD BBC do Ed C rhh h do B try egg cut of C the
None of the questions asked can be answered completely from the graph provided (GHG emissions: Direct, indirect and total Vs Year)
Reason:
1) Question A:<span>What caused a drop in GHG emissions around 2009?. This questions in pointing towards reason for drop of GHG emission around 2009. From the graph, it can be seen that there is a drop in GHG emission around 2009. However, information for reason for this drop is not available in graph.
2) Question B: </span>Did GHG emissions cause the melting of Arctic glaciers?. As mentioned earlier, the graph plotted provides information of GHG emissions: Vs Year. Information related to impact of GHG on environment is not available in graph.
3) Question C: <span>How much methane was emitted by homes between 1990 and 2000?. Graph provides information of direct and indirect emission for GHG. However, it lacks information about emission from residential or industrial sources.
4) </span>Question D: <span>Does industrial equipment release gases other than greenhouse gases?: Present study doesnot cover type of gases emitted from industrial equipment.
5) </span>Question E: <span>Which types of industries were included in the study?: Present graph has not specific information related to industries. </span>
(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.
<u>Answer:</u> The law that related the ideal gas law is 
<u>Explanation:</u>
There are 4 laws of gases:
- <u>Boyle's Law:</u> This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
Mathematically,

- <u>Charles' Law:</u> This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

- <u>Gay-Lussac Law:</u> This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

- <u>Avogadro's Law:</u> This law states that volume is directly proportional to number of moles at constant temperature and pressure.
Mathematically,

Hence, the law that related the ideal gas law is 
Speed and velocity is a scalar and vector quantity of a similar parameter, respectively. They both refer to how fast an object moves. However, the speed only has to do with the magnitude. The velocity takes into account the sign which indicates the direction of the movement. For example, the value is -5 m/s. The speed is 5 m/s, but the velocity is 5 m/s moving downwards because the negative sign denotes downward movement or movement to the left.