Explanation:
Ouhgiuytytufryftrufurtfrthfrthfhtftryfrtfrthffthfrth
Answer : Option C) Atomic Size
Explanation : The atomic radius of the elements is found to be decreasing if we go from left to right in the modern periodic table. Accordingly,
increases as the number of shielding electrons present in the atomic nucleus of the periodic elements which lies in the same row remains constant while the number of protons in each atomic shell increases.
The effective nuclear charge
of an atom is defined as the net positive charge which is felt by the valence electron of the atomic element.
When
is observed to decrease, it is seen that the atomic radius grows in size. So, it explains the inverse relationship between both. This phenomenon occurs, because there is more screening of the electrons from the nucleus taking place, which is observed due to decrease the attraction between the electron and the nucleus.
<span><span>N2</span><span>O3</span><span>(g)</span>→NO<span>(g)</span>+<span>NO2</span><span>(g)</span></span>
<span><span>[<span>N2</span><span>O3</span>]</span> Initial Rate</span>
<span>0.1 M r<span>(t)</span>=0.66</span> M/s
<span>0.2 M r<span>(t)</span>=1.32</span> M/s
<span>0.3 M r<span>(t)</span>=1.98</span> M/s
We can have the relationship:
<span>(<span><span>[<span>N2</span><span>O3</span>]/</span><span><span>[<span>N2</span><span>O3</span>]</span>0</span></span>)^m</span>=<span><span>r<span>(t)/</span></span><span><span>r0</span><span>(t)
However,
</span></span></span>([N2O3]/[N2O3]0) = 2
Also, we assume m=1 which is the order of the reaction.
Thus, the relationship is simplified to,
r(t)/r0(t) = 2
r<span>(t)</span>=k<span>[<span>N2</span><span>O3</span>]</span>
0.66 <span>M/s=k×0.1 M</span>
<span>k=6.6</span> <span>s<span>−<span>1</span></span></span>
Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg
Answer:Mass of Potassium chloride =1.762g
Explanation:
Mass of empty beaker = 23.100 g
Mass of beaker with Potassium chloride = 24.862g
Mass of Potassium chloride = Final weight - initial weight = Mass of beaker with Potassium chloride - Mass of empty beaker = 24.862-23.100 = 1.762g