It’s the process of detecting a change of a objects position relative to its surroundings
Answer:
Average atomic mass = 17.5 amu.
Explanation:
Given data:
X-17 isotope = atomic mass17.2 amu, abundance:78.99%
X-18isotope = atomic mass 18.1 amu, abundance 10.00%
X-19isotope = atomic mass:19.1 amu, abundance: 11.01%
Average atomic mass of X = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass) / 100
Average atomic mass = (78.99×17.2)+(10.00×18.1) +(11.01+ 19.1) /100
Average atomic mass = 1358.628 + 181 +210.291 / 100
Average atomic mass = 1749.919 / 100
Average atomic mass = 17.5 amu.
Answer:
Mass = 157.5 g
Explanation:
Given data:
Mass of CO needed = ?
Mass of Fe formed = 209.7 g
Solution:
Chemical equation:
3CO + F₂O₃ → 2Fe + 3CO₂
Number of moles of Fe:
Number of moles = mass/ molar mass
Number of moles = 209.7 g/ 55.85 g/mol
Number of moles = 3.75 mol
Now we will compare the moles of iron and carbon monoxide.
Fe : CO
2 : 3
3.75 ; 3/2×3.75 = 5.625 mol
Mass of CO:
Mass = number of moles × molar mass
Mass = 5.625 mol × 28 g/mol
Mass = 157.5 g
<span>Estradiol is a type of steroid produced by the ovaries and it is strong that could cause gynecological problems and cancer.</span>
Answer:
Ion-dipole forces
Explanation:
Na⁺ is a cation, that is, an ion with a positive charge.
NH₃ has polar covalent bonds (due to the difference in electronegativity between nitrogen and hydrogen). According to the VESPR theory, it has a trigonal pyramidal shape with a lone pair. As a consequence, it has a net dipole moment and the molecule is polar.
The intermolecular forces between Na⁺ (ion) and NH₃ (dipole) are ion-dipole forces.