B - A theory seems to be the closest
I can't make sense of this question. Julie's throwing the ball, so it's leaving her rather than arriving at her ???
Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.
Yes it is. Uh huh, uh huh, shore enuff. Mmm hmm. Yeah yeah yeah. Yah Mon ! Indubitably.
Answer:
<em>60008.4 J</em>
<em></em>
Explanation:
The mass of each kid = 30 kg
mass of the cart = 20 kg
The speed of the cart down the hill = 30 km/hr = 30 x 1000/3600 = 8.33 m/s
The height of the hill = 80 m
The potential energy of the boys at the top of the hill = mgh
where
m is the total mass of the kids and the cart = (30 x 2) + 20 = 80 kg
g is the acceleration due to gravity = 9.81 m/s^2
h is their height above the ground = 80 m (on the top of the hill)
substituting, we have
potential energy PE = 80 x 9.81 x 80 = 62784 J
At an instance at the bottom of the hill
their kinetic energy =
where
v is their velocity = 8.33 m/s
m is their total mass = 80 kg
substituting, we have
kinetic energy KE = = 2775.6 J
Total work done on the cart is equal to the energy lost by the cart when it reached the bottom of the hill
work done by friction = PE - KE = 62784 - 2775.6 = <em>60008.4 J</em>