Answer:
I think it's
there are the same number of molecules on each side of the equation, then a change of pressure makes no difference to the position of equilibrium
A chemical reaction (signs)
- rusting
- change in base of chemical
- for example lets say u mix two chemicals, and then it becomes a different new chemical (it changed from the inside)
a physical
- a physical reaction is outer looks not inside.
- it changes on the outside, like changing a color
Answer:
Explanation:
Our breath being absorbed by the atmosphere and dumped back down in the form of rain or snow is one of them. Respiration is the most important metabolic process for animals that can't make their own energy. It allows organisms to gather oxygen from the air in exchange for carbon dioxide and water vapor .
Answer:
336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.
Explanation:
In this case, the balanced reaction is:
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactant and product participate in the reaction:
- C₃H₈: 1 mole
- O₂: 5 moles
- CO₂: 3 moles
- H₂O: 4 moles
Being the molar mass of each compound:
- C₃H₈: 44 g/mole
- O₂: 16 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
Then, by stoichiometry, the following quantities of mass participate in the reaction:
- C₃H₈: 1 mole* 44 g/mole= 44 grams
- O₂: 5 moles* 16 g/mole= 80 grams
- CO₂: 3 moles* 44 g/mole= 132 grams
- H₂O: 4 moles* 18 g/mole= 72 grams
So you can apply the following rules of three:
- If by stoichiometry 1 mole of C₃H₈ forms 132 grams of CO₂, 2.55 moles of C₃H₈ how much mass of CO₂ will it form?

mass of CO₂= 336.6 grams
- If by stoichiometry 1 mole of C₃H₈ forms 72 grams of H₂O, 2.55 moles of C₃H₈ how much mass of H₂O will it form?

mass of H₂O= 183.6 grams
<u><em>336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.</em></u>
Im pretty sure a cinder-cone volcano