First row: HCl, ZnCl2, FeCl3, AlCl3, BaCl2, PbCl4
Second row: H3P, Zn3P2, FeP, AlP, Ba3P2, Pb3P4
Third row: HNO3, Zn(NO3)2, Fe(NO3)3, Al(NO3)3, Ba(NO3)2, Pb(NO3)4
Fourth row: ZnO, Fe2O3, Al2O3, BaO, PbO2
Fifth row: HCaF2, Zn(CaF2)2, Fe(CaF2)3, Al(CaF2)3, Ba(CaF2)2, Pb(CaF2)4
Sixth row: H2SO4, ZnSO4, Fe2(SO4)3, Al2(SO4)3, BaSO4, Pb(SO4)2
Answer:
0.56 M
Explanation:
Step 1: Given data
- Rate constant (k): 0.035 s⁻¹
- Initial concentration of the reactant ([A]₀): 1.5 M
Step 2: Calculate the amount of reactant ([A]) after 28 seconds
For a first-order kinetics, we will use the following expression.
ln [A] = ln [A]₀ - k × t
ln [A] = ln 1.5 - 0.035 s⁻¹ × 28 s
[A] = 0.56 M
Its genes from your parents
Metals are the type of elements that are most likely to form more than one type of ion, for instance iron can form the ion of Fe^2+ or Fe^3+.