Answer:
Ionic bonds result from the transfer of electrons from one atom to another
Explanation:
In covalent bonds, atoms share electrons, whereas in ionic bonds atoms transfer electrons. The reaction components of covalent bonds are electrically neutral, whereas for ionic bonds they are both charged.Covalent bonds are formed between two non-metals, whereas ionic bonds are formed between a metal and non-metal.
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
Interphase is not a phase of mitosis.
Answer:
Aluminium.
Explanation:
The above electronic configuration can be written in a simplified form as shown below:
1s² 2s²2p⁶ 3s²3p¹
Next, we shall determine the number of electrons in the atom of the element as follow:
Number electron = 2 + 2 + 6 + 2 + 1
Number of electron = 13
Next, we shall determine the number of protons.
Since the element is in its neutral state,
The number of electrons and protons are equal i.e
Proton = Electron
Number of electron = 13
Proton = Electron = 13
Proton = 13
Next, we shall determine the atomic number of the element.
The atomic number of an element is simply the number of protons in the atom of the element i.e
Atomic number = proton number
Proton = 13
Atomic number = 13
Comparing the atomic number of the element with those in the periodic table, the element with the above electronic configuration is aluminium since no two elements have the same atomic number.
Answer:
Potassium permanganate has a molar mass of 158.04 g/mol. This figure is obtained by adding the individual molar masses of <em><u>four oxygen atoms</u></em>, <em><u>one manganese atom</u></em> and <em><u>one potassium atom</u></em>
Explanation: