Answer:
24.24 L
Explanation:
Boyle’s law, also called Mariotte’s law, a relation concerning the compression and expansion of a gas at constant temperature.
This empirical relation, formulated by the physicist Robert Boyle in 1662, states that the pressure (p) of a given quantity of gas varies inversely with its volume (v) at constant temperature; i.e., in equation form, pv = k, a constant.
Real gases obey Boyle’s law at sufficiently low pressures, although the product pv generally decreases slightly at higher pressures, where the gas begins to depart from ideal behaviour.
As, PV = k
P₁ V₁ = P₂ V₂
Given P₁ = 101 KPa
V₁ = 6 L
P₂ = 25 kPa
So, V₂ = P₁ V₁ /P₂ = 101 *6/25 = 24.24 L
Answer:
30 kJ
Explanation:
Arrhenius equation is given by:

Here, k is rate constant, A is Pre-exponential factor, Ea is activation energy and T is temperature.
taking natural log of both side
ln k = ln A - Ea/RT
In Arrhenius equation, A, R and T are constant.
Therefore,

is the lowering in activation energy by enzyme,
R = 8.314 J/mol.K
T = 37°C + 273.15 = 310 K


Buckyball or buckminster fullerene is the third allotrope of carbon. It contains 60 carbons which are arranged in the five and six membered rings. Buckyball is the cluster of carbon atoms which are arranged in spherical shape and it forms a hollow cage.
The physical properties are:
Buckyball is made up of huge number of molecules but giant covalent bond is not exist.
The forces between the individual buckyballs are weak intermolecular forces.
The substances which are made up of buckyballs has low melting point in comparison to other allotropes of carbon as low energy is required to overcome theses intermolecular forces.
The substances which are made up of buckyballs is slippery in nature.
The solutions of buckminster fullerene are deep purple in color and upon evaporation brown residue is obtained.
Buckyball is soft in comparison to graphite and when it is compressed to less than 70 percent of its volume then, it converts into superhard form of diamond.
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.