The chemical reaction is written as:
2Zn + O2 = 2ZnO
We are given the amount of the product to be produced from the reaction. We use this value and the relation of the substances in the reaction to calculate what is asked. We do as follows:
2.10 g ZnO ( 1 mol / 81.408 g ) ( 1 mol O2 / 2 mol ZnO ) ( 32 g / 1 mol ) = 0.414 g O2 is needed
Answer:
A generator produces electricity and an electric motor consumes electricity
Answer:
665 g
Explanation:
Let's consider the following thermochemical equation.
2 C₄H₁₀(g) + 13 O₂(g) → 8 CO₂(g) + 10 H₂O(l), ΔH°rxn= –5,314 kJ/mol
According to this equation, 5,314 kJ are released per 8 moles of CO₂. The moles produced when 1.00 × 10⁴ kJ are released are:
-1.00 × 10⁴ kJ × (8 mol CO₂/-5,314 kJ) = 15.1 mol CO₂
The molar mass of CO₂ is 44.01 g/mol. The mass corresponding to 15.1 moles is:
15.1 mol × 44.01 g/mol = 665 g
Answer:
<h3>The answer is 8.29 %</h3>
Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
actual density = 19.30g/L
error = 20.9 - 19.3 = 1.6
We have

We have the final answer as
<h3>8.29 %</h3>
Hope this helps you
Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!