Answer:
For an object to be an equilibrium it must be experiencing no acceleration.
Explanation:
Hope it helps.
Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
A car is built from various subsystems. If these subsystems are not working properly it is dangerous because it can cause a serious traffic accident.
<h3>What subsystems do cars have?</h3>
When you're testing the build of a car, you have to check its many subsystems:
- the battery
- the engine
- the cabin
- the thermal-management system
- the gearbox
- the chassis
- the suspension
<h3>Why is a car with damaged subsystems dangerous?</h3>
The subsystems of a car are very important components that allow the proper functioning of the car. These subsystems work synchronously making the car work properly.
However, if one of these subsystems is not working properly it could cause a malfunction that could lead to a traffic accident.
Learn more about cars in: brainly.com/question/11733094
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).