1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
7

Calculate the magnitude of the force exerted by each wire on a 1.20-m length of the other.

Physics
1 answer:
Zielflug [23.3K]3 years ago
4 0

Incomplete question.The complete question is attached below as screenshot along with figure

Answer:

F=6.00*10^{-6}N

Force is repulsive

Explanation:

Given data

Current I₁=5.00A

Current I₂=2.00A

Length L=1.20 m

Radius r=0.400m

To find

Force F

Solution

As the force is repulsive because currents are in opposite direction

From repulsive force we know that:

F=\frac{u_{o}I_{1}I_{2}L}{2\pi r}

Substitute the given values

F=\frac{u_{o}(5.00A)(2.00A)(1.20m)}{2\pi (0.400m)}\\ F=6.00*10^{-6}N

You might be interested in
An astronaut lands on an alien planet. He places a pendulum (L = 0.200 m) on the surface and sets it in simple harmonic motion,
Ne4ueva [31]
A)  f = 1.8 rev/s = 2 Hz 
<span>T = 1 / f = 0.55s

B)  not really sure..srry

C)  </span><span>T = 2 pi √ ( L / g ) </span>
<span>0.57 = 2 x 3.14 x √ ( 0.2 / g )
</span><span>
g = 25.5 m/s²
</span>
Hope this helps a little at least.. :)

5 0
3 years ago
Which wave property changes when two waves interfere in the same medium?
LuckyWell [14K]
<span>When two waves of same frequency travel in a medium simultaneously in the same direction then, due to their superposition, the resultant intensity at any point of the medium is different from the sum of intensities of the two waves. At certain points the intensity of the resultant wave has a large value while at some points it has a very small or zero. This is called wave interference.</span>
3 0
3 years ago
Write short notes on proper management of sewage and garbage​
vladimir2022 [97]

Explanation:

Waste management (or waste disposal) includes the processes and actions required to manage waste from its inception to its final disposal.[1] This includes the collection, transport, treatment and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, economic mechanisms. Proper management of waste is important for building sustainable and liveable cities, but it remains a challenge for many developing countries and cities. A report found that effective waste management is relatively expensive, usually comprising 20%–50% of municipal budgets. Operating this essential municipal service requires integrated systems that are efficient, sustainable, and socially supported.[6] A large portion of waste management practices deal with municipal solid waste (MSW) which is the bulk of the waste that is created by household, industrial, and commercial activity.[7] Measures of waste management include measures for integrated techno-economic mechanisms[8] of a circular economy, effective disposal facilities, export and import control[9][10] and optimal sustainable design of products that are produced.

8 0
2 years ago
How does Newton describe the dependence of acceleration of a body on its mass and the net applied force?
tatiyna
<h2>Isaac Newton's First Law of Motion states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force." What, then, happens to a body when an external force is applied to it? That situation is described by Newton's Second Law of Motion.  </h2><h2> equation as ∑F = ma </h2><h2> </h2><h2>The large Σ (the Greek letter sigma) represents the vector sum of all the forces, or the net force, acting on a body.  </h2><h2> </h2><h2>It is rather difficult to imagine applying a constant force to a body for an indefinite length of time. In most cases, forces can only be applied for a limited time, producing what is called impulse. For a massive body moving in an inertial reference frame without any other forces such as friction acting on it, a certain impulse will cause a certain change in its velocity. The body might speed up, slow down or change direction, after which, the body will continue moving at a new constant velocity (unless, of course, the impulse causes the body to stop). </h2><h2> </h2><h2>There is one situation, however, in which we do encounter a constant force — the force due to gravitational acceleration, which causes massive bodies to exert a downward force on the Earth. In this case, the constant acceleration due to gravity is written as g, and Newton's Second Law becomes F = mg. Notice that in this case, F and g are not conventionally written as vectors, because they are always pointing in the same direction, down. </h2><h2> </h2><h2>The product of mass times gravitational acceleration, mg, is known as weight, which is just another kind of force. Without gravity, a massive body has no weight, and without a massive body, gravity cannot produce a force. In order to overcome gravity and lift a massive body, you must produce an upward force ma that is greater than the downward gravitational force mg.  </h2><h2> </h2><h2>Newton's second law in action </h2><h2>Rockets traveling through space encompass all three of Newton's laws of motion. </h2><h2> </h2><h2>If the rocket needs to slow down, speed up, or change direction, a force is used to give it a push, typically coming from the engine. The amount of the force and the location where it is providing the push can change either or both the speed (the magnitude part of acceleration) and direction. </h2><h2> </h2><h2>Now that we know how a massive body in an inertial reference frame behaves when it subjected to an outside force, such as how the engines creating the push maneuver the rocket, what happens to the body that is exerting that force? That situation is described by Newton’s Third Law of Motion.</h2><h2 />
4 0
2 years ago
A mobile phone is 35% efficient. Over half an hour 11 kJ of energy is transferred to the phone.
kramer
<h3><u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u></h3>

  • Energy Transferre=11KJ
  • Efficiency=35%
<h3>☆Usefully transferred energy:-</h3>

\\ \sf\longmapsto 35\%\:of 11

\\ \sf\longmapsto 35\%\times 11

\\ \sf\longmapsto \dfrac{35}{100}\times 11

\\ \sf\longmapsto \dfrac{385}{100}

\\ \sf\longmapsto 3.85KJ

\\ \sf\longmapsto 3850J

6 0
2 years ago
Other questions:
  • What brand of soda contains the most caffeine? the dependent variable is the most caffeine
    15·1 answer
  • The average period of pendulum clock is found to be 1.2s at sea level. The period of the same pendulum on a mountain top is foun
    13·1 answer
  • Explain how gamma rays are produced by energy
    7·1 answer
  • Using Figure 25-2, determine how Giant stars differ from main sequence stars.
    14·2 answers
  • If the force being applied to an object is doubled, what will happen to its<br> acceleration?
    12·1 answer
  • A magnetic field has a magnitude of 0.35 T and is uniform over a square loop (1 turn) 0.2 m per side. The field is oriented at a
    13·1 answer
  • The small ball of mass m = 0.5 kg is attached to point A via string and is moving at constant speed in a horizontal circle of ra
    7·1 answer
  • 2. In any energy transformation, energy is _____. A created B conserved C destroyed
    9·1 answer
  • This may seem a little personal, but how do you ask a girl out that doesn't seem to have intrest in you? I'll give brainliest to
    8·1 answer
  • 50 POINTS!!!!!!!!<br><br> In a GUT (Grand Unified Theory), what is "unified"?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!