Answer:
Hexane
Explanation:
You have a carbon structure with only single bonds. This means that the name will end in -ane.
There are 6 carbon atoms. This means that the name will begin with hex-.
The structure is hexane.
There are new ideas and questions that people are trying out and solving. Based off of that, the theories and ideas that we have now will change and evolve with the theories that have been tested and the questions that have been answered.
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9
Answer: 1. Is2 2s2 2p3
2. Nitrogen
Explanation: The number of electron present In C = 6
But an extra electron is added since the charge on C is -1, this therefore makes the total electron 7.
1. By arrangement, the Electronic configuration is therefore;
Ans: 1s2 2s2 2p3
2. It is explained how C has 7 electrons, we can proceed then.
Neutral atom have atomic number of 7.
The element with atomic number of 7 is;
Ans: NITROGEN
Answer: Acceleration and velocity
Explanation:
Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to accelerate in the direction of the force.