Answer is: the percent purity of the sodium bicarbonate is 56.83 %.
1. Chemical reaction: 2NaHCO₃ + H₂SO₄ → 2CO₂ + 2H₂O + Na₂SO₄.
2. m(NaHCO₃) = 3.50 g
n(NaHCO₃) = m(NaHCO₃) ÷ M(NaHCO₃).
n(NaHCO₃) = 3.50 g ÷ 84 g/mol.
n(NaHCO₃) = 0.042 mol.
3. From chemical reaction: n(NaHCO₃) : n(CO₂) = 1 : 1.
n(CO₂) = 0.042 mol.
m(CO₂) = 0.042 mol · 44 g/mol.
m(CO₂) = 1.83 g.
4. the percent purity = 1.04 g/1.83 g ·100%.
the percent purity = 56.8 %.
1.51 x 10²⁵atoms
Explanation:
Given parameters:
Mass of Na = 578g
Unknown:
Number of atoms = ?
Solution:
To find the number of atoms, we must first find the number of moles the given mass contains.
Number of moles = 
molar mass of Na = 23g
Number of moles =
= 25.13moles
1 mole of a substance = 6.02 x 10²³atoms
25.13 mole of Na = 25.13 x 6.02 x 10²³atoms
This gives 1.51 x 10²⁵atoms of Na
Learn more:
Avogadro's constant brainly.com/question/2746374
#learnwithBrainly
Answer: option D. The attractive forces between the sodium and chloride ions are overcome by the attractive forces between the water and the sodium and chloride ions.
Explanation:
<em>Solid sodium chloride</em> (NaCl) is a ionic compound formed by ionic bonds between by the positive, metallic cations of sodium atom, Na⁺, and the negative, non-meatllic anions of chlorine atom, Cl⁻ (chloride).
Ionic bonds, then, are the electrostatic attracion between oppositely charged particles (cations and anions).
<em />
<em>When solid sodium chloride dissolves in water</em>, the ions (cations and anions) are separated in the solvent (water) due to the superior attracitve forces between such ions and the polar water molecules.
<em>Water</em> (H₂O) is a molecule, formed by polar covalent bonds between two hydrogen atoms and one oxygen atom.
The polarity of water molecule is due to the fact that oxygen atoms are more electronegative than hydrogen atoms, which cause that the electron density is closer to oxygen nuclei than to hydrogen nuclei. This asymmetry in the electron density conferes a partial positive charge over each hydrogen atom and a partial negative charge over the oxygen atoms.
Thus, the positively charged hydrogen atoms attract and surround the negative chloride (Cl⁻) anions, while the negatively charged oxygen atoms attract and surround the positive sodium (Na⁺) cations. It is only because the attractive forces between the water and the sodium and chloride ions are stronger than the attractive forces between the sodiium and chloride ions that such ions may be kept separated in the solution. This process is called solvation and the ions are said to be solvated by the water molecules.
Convert mols to grams by multiplying grams of tin by the number of mols.
There are 119 grams per mol
119 x 11.8 = 1404 grams