1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
3 years ago
13

4)The stock price of the

Mathematics
1 answer:
My name is Ann [436]3 years ago
4 0
Shouldn’t it be 12.75$? 12.5 +1-2+.5+.75= $12.75?
You might be interested in
1. Is the number 5 prime, composite,<br> or neither?
Elena-2011 [213]
<h2>1. Is the number 5 prime, composite,</h2><h2>or neither?</h2><h3>The number 5 is prime since it can only be divided by itself and 1.</h3><h3 /><h3>Hope I helped. :)</h3>
3 0
3 years ago
Read 2 more answers
Sending an email message is not like sending a sealed envelope through the postal service. Communications on paper are far less
alisha [4.7K]
? i have no idea what your question is
5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
C + 15 = 23c + 2 − 43c What is the value of c that makes the equation true?
Vsevolod [243]

The value of c that makes the equation true is: c = -13/21.

<h3>What is an Equation?</h3>

An equation is a mathematical statement whose values on the right and left sides are equal.

Given:

c + 15 = 23c + 2 − 43c

Find the value of c

c + 15 = -20c + 2

c + 20c = -15 + 2

21c = -13

c = -13/21

Thus, the value of c that makes the equation true is: c = -13/21.

Learn more about equation on:

brainly.com/question/15523338

7 0
3 years ago
Read 2 more answers
NO FAKE ANSWERS PLEASE IM BEGGING YOU 40 POINTS!!!!!! PLEEASEEEE HELP!!!!!!!!!!!!!! I already solved half of it pls help on part
Vikki [24]

Answer:

    Part 1

Given equation:

C(t) = -0.30 (t – 12)² + 40  

For t = 0

C(t) = -0.30 (0 - 12)² + 40

C(t) = -0.30 (-12)² + 40

C(t) = -3.2

For t = 12 (noon)

C(t) = -0.30 (12 - 12)² + 40

C(t) = -0.30 (0)² + 40

C(t) = 40

For t = 24 (midnight)

C(t) = -0.30 (24 - 12)² + 40

C(t) = -0.30 (12)² + 40

C(t) = -0.30 × 144 + 40

C(t) = - 43.2 + 40

C(t) = -3.2

Part 2

attached below

Part 3

C(t) = –0.30(t – 12)² + 40

F(t)=9/5C(t)+32

Substituting the values:

F(t)=9/5{–0.30 (t – 12)² + 40}+32

F(t) = -0.54 (t – 12)² + 72 + 32

F(t) = -0.54 (t – 12)² + 104

5, 6 and 7, should be simplish

good luck, i hope this helps :)

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Solve the equations<br> -7x - 93 = 150 + 2x
    5·2 answers
  • There are 120 horses on a farm. 1/2 of the horses are brown, 1/3 of the horses are black and 1/6 of the horses are spotted. How
    6·1 answer
  • n the graph above, the coordinates of the vertices of quadrilateral QPRS are Q(2, 4), P(4, 4), R(3, 1), and S(1, 1). If quadrila
    10·1 answer
  • Alanna is painting a border on a wall. The border consists of kite-shaped figures as shown.
    7·2 answers
  • isaac used 1/4 of an ounce of nuts to make 1/12 pound of cake. how many ounces of nuts are needed to make a cake?
    14·1 answer
  • Find the MAD for 15 points
    8·1 answer
  • Which division problem does the model below show? 4 fraction bars. The fraction bars are labeled 1 and each have 6 boxes underne
    9·2 answers
  • What 3/4 x 5/8 in fraction
    9·2 answers
  • PLEASE HELP ME FAST!!
    12·1 answer
  • find the surface area a planet if its circumference is about 18,000 miles long. Round to the nearest thousand square miles
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!