Answer:
Hydrogen peroxide is a very pale blue liquid at room temperature. A French scientist called Louis Auguste Thenard discovered the compound in 1818. Hydrogen peroxide can easily break down, or decompose, into water and oxygen by breaking up into two very reactive parts – either 2OHs or an H and HO2:
Explanation:
Answer: an element, feature, or factor that is liable to vary or change.
"there are too many variables involved to make any meaningful predictions"
Explanation:
Two or more atoms<span> may </span>bond<span> with each other to form a molecule. When two hydrogens and an oxygen share electrons via covalent </span>bonds<span>, a water molecule is formed. Chemical reactions </span>occur<span> when two or more </span>atoms bond<span> together to form molecules or when bonded </span>atoms are broken<span> apart.</span>
Answer:
9.15 atm
Explanation:
Ideal gas equation of state PV=nRT
P in hPa, V in L, n in mol, R is a constant which is 83.1 hpa*L/mol*k, T in kelvin.
Plug in all the number, and we will get:
P*6.21=2.02*83.1*343
P =9271.6(in hpa)=9.15 atm
<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g