Answer:
just see if i am not wrong
learning balancing in chemistry it take time
hope i am correct
Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.
Out of the choices given, the part of the atom that forms chemical bonds are the outermost electrons. The correct answer is B.
Solution:
Since we have ml=-1
it shows that it has two 2e- i;e it fond in 2nd subshell in f orbital. And each subshell can hold 2 e-.
Thus the required answer is 2 electrons hold by an atom.
Answer : The volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml
Solution : Given,
Molarity of aqueous
solution = 1.20 M = 1.20 mole/L
Volume of aqueous
solution = 50.0 ml = 0.05 L
(1 L = 1000 ml)
Molarity of
stock solution = 4.9 M = 4.9 mole/L
Formula used :

where,
= Molarity of aqueous
solution
= Molarity of
stock solution
= Volume of aqueous
solution
= Volume of
stock solution
Now put all the given values in this formula, we get the volume of
stock solution.

By rearranging the term, we get

Therefore, the volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml