1. Frequency is the number of complete waves that pass a point in a second. 2.Wavelength is the distance between two crests or two troughs. 3.Time period <span> is the time it takes for one complete wave to pass a given point. 4. Amplitude is the height of the wave. Hence option 4 is correct. </span>
Answer:
58.24 Km/h.
Explanation:
From the question given above, the following data were obtained:
Distance (d) = 495 Km
Time (t) = 8 h 30 mins
Speed (S) =?
Next, we shall express 8 hours 30 mins to hours.
We'll begin by convert 30 mins to hour.
60 mins = 1 h
Therefore,
30 mins = 30 mins × 1 h/ 60 mins
30 mins = 0.5 hour.
Thus,
8 h 30 min = 8 + 0.5 = 8.5 hours
Speed is define as the distance travelled per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can obtain the speed as shown below:
Distance (d) = 495 Km
Time (t) = 8.5 hour
Speed (S) =?
Speed = Distance /time
Speed = 495 Km / 8.5 hour
Speed = 58.24 Km/h
Thus, the speed is 58.24 Km/h.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The components of reaction at the fixed support are
,
,
,
,
, 
Explanation:
Looking at the diagram uploaded we see that there are two forces acting along the x-axis on the fixed support
These force are 400 N and
[ i.e the reactive force of 400 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Looking at the diagram uploaded we see that there are two forces acting along the y-axis on the fixed support
These force are 500 N and
[ i.e the force acting along the same direction with 500 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Looking at the diagram uploaded we see that there are two forces acting along the z-axis on the fixed support
These force are 600 N and
[ i.e the reactive force of 600 N ]
Hence the sum of forces along the x axis is mathematically represented as

=> 
Generally taking moment about A along the x-axis we have that

=> 
Generally taking moment about A along the y-axis we have that

=> 
Generally taking moment about A along the z-axis we have that

=> 