The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
False. They are arranged in a structure called a crystal lattice
Path length is 2*pi*0.4=2.512
Speed=distance/time
Speed =2.512/0.2=12.56m/s
THE DOPPLER EFFECT. Anyways, it would have a higher whistle as it approaches you, when it gets to you it only gets quieter because it leaves after. Think of a motorcycle going by, its loud coming to you then as it passes it gets quieter.