The potential energy= mass times gravity times height. However, we are missing height. Gravity is a constant that is 9.8 on Earth. We then solve for height by dividing 350 by 10 and then 9.8 to get about 3.5.
TLDR: 3.5
Answer:
Force is classified as a push or a pull
Explanation:
Answer: high temperature and low pressure
Explanation:
The Ideal Gas equation is:
Where:
is the pressure of the gas
is the volume of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them.
Now, real gases can behave approximately to an ideal gas, under the conditions described above and taking into account the following:
When <u>temperature is high</u> a real gas approximates to ideal gas, because the molecules move quickly, preventing the repulsion or attraction forces to take effect. In addition, at <u>low pressures</u>, the volume of molecules is negligible.
Answer:
The compression in the spring is 5.88 meters.
Explanation:
Given that,
Mass of the car, m = 39000 kg
Height of the car, h = 19 m
Spring constant of the spring, 
We need to find the compression in the spring in stopping the ore car. It can be done by balancing loss in gravitational potential energy and the increase in elastic energy. So,

x is the compression in spring

So, the compression in the spring is 5.88 meters.
Answer: 14.5 N
Explanation: NEED SCRATCH PAPER: A flower pot weighing 42.0 N (newtons) is hung above a window by three ropes, each making an angle of 15.0 degrees with the vertical. What is the tension in each rope supporting the flower pot?
✓ 14.5 N
found it on the internet?