Enertia es el answer de tu question
We have,
- The mass of sally's mug is 1 kg
- The pressure appliedby the mug is 1100 pascal.
We know that,
As, we already have the value of pressure, let's calculate that of force now;
- F = ma
- F = 1 × 9.8 { Acceleration due to gravity, let's round off it to 10}
- F = 10 N
Just put all the values in the formula now;
- P = F/A
- 1100 = 10 / A
- 1100/10 = A
- 110 m² = A
As, it is already mention that we need to find the radius of the mug, it is obviously a circular base.
We know that,
- Surface area = Circumference
So, let's solve it;
- Circumference = 2πr
- 110 = 2 × 22/7 × r
- 110 × 7/2 × 22 = r
- 5 × 7 = r
- 35 cm = r
<u>T</u><u>h</u><u>u</u><u>s</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>d</u><u>i</u><u>u</u><u>s</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>c</u><u>i</u><u>r</u><u>c</u><u>l</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>3</u><u>5</u><u> </u><u>c</u><u>m</u><u>.</u>
Yes. take a bow for instance. while pulling back the string you have potential energy. when you let the string go and the arrow flies towards your target the string is filled with kinetic energy.
Explanation:
It is given that,
Mass of the passenger, m = 75 kg
Acceleration of the rocket, 
(a) The horizontal component of the force the seat exerts against his body is given by using Newton's second law of motion as :
F = m a

F = 3675 N
Ratio, 

So, the ratio between the horizontal force and the weight is 5 : 1.
(b) The magnitude of total force the seat exerts against his body is F' i.e.


F' = 3747.7 N
The direction of force is calculated as :



Hence, this is the required solution.
Answer:
Explanation:
Angular velocity of satellite
= 2π x .01
= .02 π rad /s
Initial angular momentum
Moment of inertia x angular velocity
= 2000 x .02 π
= 125.6 unit
Linear impulse produced by each thruster
= 15 N.s
Angular impulse
= 15 x 1.5 = 22.5 unit
Total angular impulse in 30 pulses
= 22.5 x 2 x 30
1350
This angular impulse will add total angular momentum of
1350 unit
So total angular momentum after 30 pulses
= 1350 + 22.5
= 1372.5 unit
So final angular velocity
= final angular momentum / moment of inertia
= 1372.5 / 2000
= 0 .686 rad /s