Answer:
North of west
Explanation:
Given
Plane wishes to fly in west
but wind with speed 33.9 km/h towards south obstructing its path
so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west
Plane absolute speed=195 km/h
To fly towards west velocity in Y direction should be zero
thus 

so Plane should head towards
North of west in order to fly in west.
So plane
actual velocity is

Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
Answer:
1.82 rad/s².
Explanation:
Applying,
α = (ω₂-ω₁)/t..................... Equation 1
Where α = angular acceleration of the fan blades, ω₂ = final angular velocity of the fan blades, ω₁ = initial angular velocity of the fan blades, t = time.
Given: ω₂ = 350 rpm = (350×0.1047) rad/s = 36.645 rad/s. ω₁ = 250 rpm = (250×0.1047) rad/s = 26.175 rad/s, t = 5.75 s.
Substitute into equation 1
α = (36.645-26.175)/5.75
α = 10.47/5.75
α = 1.82 rad/s².
Hence the magnitude of the angular acceleration of the fan blades = 1.82 rad/s²
a.) the belief that stars and planets revolve around the earth
Explanation:
The geocentric model of stars and planets is the belief that stars and planets revolves around the earth.
The model places the earth at the center of the system.
- Geo - earth ; centric - center
- This was the original school of thought about the way the earth relates to other bodies in the universe.
- This model was replaced by the heliocentric universe in which stars are at the center and the planets revolves round them.
- The idea was put forward by Nicola Copernicus
learn more:
Energy of the sun brainly.com/question/1140127
#learnwithBrainly