Not strong base and acid, not dissolved or not aqueous.
Answer:
The mass of copper(II) sulfide formed is:
= 81.24 g
Explanation:
The Balanced chemical equation for this reaction is :

given mass= 54 g
Molar mass of Cu = 63.55 g/mol

Moles of Cu = 0.8497 mol
Given mass = 42 g
Molar mass of S = 32.06 g/mol

Moles of S = 1.31 mol
Limiting Reagent :<em> The reagent which is present in less amount and consumed in a reactio</em>n
<u><em>First find the limiting reagent :</em></u>

1 mol of Cu require = 1 mol of S
0.8497 mol of Cu should require = 1 x 0.8497 mol
= 0.8497 mol of S
S present in the reaction Medium = 1.31 mol
S Required = 0.8497 mol
S is present in excess and <u>Cu is limiting reagent</u>
<u>All Cu is consumed in the reaction</u>
Amount Cu will decide the amount of CuS formed

1 mole of Cu gives = 1 mole of Copper sulfide
0.8497 mol of Cu = 1 x 0.8497 mole of Copper sulfide
= 0.8497
Molar mass of CuS = 95.611 g/mol


Mass of CuS = 0.8497 x 95.611
= 81.24 g
Answer : The volume of the balloon at the new location is, 591.3 L
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.995 atm
= final pressure of gas = 0.720 atm
= initial volume of gas = 500 L
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the volume of the balloon at the new location is, 591.3 L
1) radio waves
2) ultraviolet rays
Carbohydrates. The digestion of carbohydrates begins in the mouth. The salivary enzyme amylase begins the breakdown of food starches into maltose, a disaccharide. As the food travels through the esophagus to the stomach, no significant digestion of carbohydrates takes place.