For the reaction below at dynamic equilibrium, it is true that the rate of the forward reaction equals the rate of the reverse reaction.
Let's consider the following reaction at equilibrium.
N₂(g) + 3 H₂(g) = 2 NH₃(g)
<h3>What is the chemical equilibrium?</h3>
Is a state in which the concentrations of reactants and products are constant and the forward reaction rate and constant reaction rate are equal.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant (K) is the ratio of the concentrations of the products to the concentrations of the reactants, all raised to their stoichiometric coefficients.
Let's consider which statement is true for the equilibrium system.
- The concentration of NH₃ is greater than the concentration of N₂. FALSE. There is not enough information to confirm this, we would need to know the value of K.
- The concentration of NH₃ equals the concentration of N₂. FALSE. There is not enough information to confirm this, we would need to know the value of K.
- The rate of the forward reaction equals the rate of the reverse reaction. TRUE. This is always true for a reaction at equilibrium.
- The rate of the forward reaction is greater than the rate of the reverse reaction. FALSE. At equilibrium, both rates are equal.
For the reaction below at dynamic equilibrium, it is true that the rate of the forward reaction equals the rate of the reverse reaction.
Learn more about chemical equilibrium here: brainly.com/question/5081082
Answer:
True
Explanation:
The value of the mole is equal to the number of atoms in exactly 12 grams of pure carbon-12. 12.00 g C-12 = 1 mol C-12 atoms = 6.022 × 1023 atoms • The number of particles in 1 mole is called Avogadro's Number (6.0221421 x 1023).
The relative abundance and the mass number usually they give these to you. They give me both these values in my chemistry class so i just multiply add the products and get my answer
Answer:
Glucose. C6H12O6
Explanation:
In aerobic respiration glucose generate ATP. Which are the source of energy.