Answer:
How may we help kind sir
Explanation:
and if this was for points thanks
The standard ambient temperature and pressure are
Temperature =298 K
Pressure = 1atm
The density of gas is 1.5328 g/L
density = mass of gas per unit volume
the ideal gas equation is
PV = nRT
P = pressure = 1 atm
V = volume
n = moles
R= gas constant = 0.0821 Latm/mol K
T = 298 K
moles = mass / molar mass
so we can write
n/V = density / molar mass
Putting values



Thus molar mass of gas is 37.50g/mol
Answer:
Explanation:
1) Find number of each of the type of atom that is present in the compound, using the chemical formula .
2) Then multiply number of atoms of each element that is present in the compound with the atomic weight of each of the element
3) Add everything together and add the units (grams/mole ) after the number
Let finds that of water
Chemical formula of water is (H20 )
hydogens atoms= 2
oxygen atom= 1
Atomic weight for Hydrogen= 1
Atomic weight for Oxygen= 16
Total number of atoms of Hydrogen from the formula (H2O)= 2
Total number of atoms of Oxygen from the formula (H2O)= 1
the molar mass=
Hydrogen: ( 2 x 1)= 2
Oxygen: ( 1 x 16)= 16
Add together= (16+2)
= 18
Then add the unit, we have(18 g/mol.)
Answer:
1.
Explanation:
Let's start with the hydrogen. If we have 4 grams of hydrogen, it would be enough for 4 * 9 = 36 grams of water. Well, that can't be possible ...
4 votes
Answer:
i. Molar mass of glucose = 180 g/mol
ii. Amount of glucose = 0.5 mole
Explanation:
<em>The volume of the glucose solution to be prepared</em> = 500 
<em>Molarity of the glucose solution to be prepared</em> = 1 M
i. Molar mass of glucose (
) = (6 × 12) + (12 × 1) + (6 × 16) = 180 g/mol
ii.<em> mole = molarity x volume</em>. Hence;
amount (in moles) of the glucose solution to be prepared
= 1 x 500/1000 = 0.5 mole