Answer:
answer A
Explanation:
A) the quantity of usable energy declines with each transformation → True . Since the entropy increases , the amount of energy that can not be converted to useful energy increases and since the total amount of energy is conserved, the quantity of useful energy decreases.
B) energy can be neither created nor destroyed → False in the context of entropy , since the energy is conserved regardless of the changes in entropy (First law → conservation of energy vs second law → increase of entropy)
C) life should be impossible → False . Since the second law states that the entropy of the <u>universe </u>increases with time . Then the system (life) can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
D) it is not possible to observe an increase in molecular organisation → False . Same as C. A system can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
Answer:
left to right across a period when it decreases and when it increases top to bottom in a group,
hope i helped
Answer:
The value of an integer x in the hydrate is 10.
Explanation:

Molarity of the solution = 0.0366 M
Volume of the solution = 5.00 L
Moles of hydrated sodium carbonate = n


Mass of hydrated sodium carbonate = n= 52.2 g
Molar mass of hydrated sodium carbonate = 106 g/mol+x18 g/mol



Solving for x, we get:
x = 9.95 ≈ 10
The value of an integer x in the hydrate is 10.
The answer is b. as a whole, the species is mutually beneficial to carry on each others traits and exist in the same ecosystem.
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ