Answer: B. 44.64 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Mass of reactants = mass of iron + mass of oxygen = mass of iron + 34.7 g
Mass of product = mass of iron oxide = 79.34 g
As Mass of reactants = Mass of product
mass of iron + 34.7 g = 79.34 g
mass of iron = 44.64 g
Thus 44.64 g of iron was used in the reaction
Since energy cannot be created nor destroyed, the change in energy of the electron must be equal to the energy of the emitted photon.
The energy of the emitted photon is given by:

where
h is the Planck constant
f is the photon frequency
Substituting

, we find

This is the energy given to the emitted photon; it means this is also equal to the energy lost by the electron in the transition, so the variation of energy of the electron will have a negative sign (because the electron is losing energy by decaying from an excited state, with higher energy, to the ground state, with lower energy)
Answer. Second Option: .85p_o=p_o e^-.00012h
Solution:
P(h)=Po e^(-0.00012h)
Air pressure: P(h)
Height above the surface of the Earth (in meters): h
Air pressure at the sea level: Po
Height at which air pressure is 85% of the air pressure at sea level:
h=?, P(h)=85% Po
P(h)=(85/100) Po
P(h)=0.85 Po
Replacing P(h) by 0.85 Po in the formula above:
P(h)=Po e^(-0.00012h)
0.85 Po = Po e^(-0.00012h)