Answer:
V = 331.59m/s
Explanation:
First we need to calculate the time taken for the shell fire to hit the ground using the equation of motion.
S = ut + 1/2at²
Given height of the cliff S = 80m
initial velocity u = 0m/s²
a = g = 9.81m/s²
Substitute
80 = 0+1/2(9.81)t²
80 = 4.905t²
t² = 80/4.905
t² = 16.31
t = √16.31
t = 4.04s
Next is to get the vertical velocity
Vy = u + gt
Vy = 0+(9.81)(4.04)
Vy = 39.6324
Also calculate the horizontal velocity
Vx = 1330/4.04
Vx = 329.21m/s
Find the magnitude of the velocity to calculate speed of the shell as it hits the ground.
V² = Vx²+Vy²
V² = 329.21²+39.63²
V² = 329.21²+39.63²
V² = 108,379.2241+1,570.5369
V² = 109,949.761
V = √ 109,949.761
V = 331.59m/s
Hence the speed of the shell as it hits the ground is 331.59m/s
Answer:Twice of given mass
Explanation:
Given
Two Particles of Equal mass placed at the base of an equilateral Triangle
let mass of two equal masses be m and third mass be m'
Taking one of the masses at origin
Therefore co-ordinates of first mass be (0,0)
Co-ordinates of other equal mass is (a,0)
if a is the length of triangle
co-ordinates of final mass 
Given its center of mass is at midway between base and third vertex therefore






Because they eventually erode and then break and end up forming underwater.
Answer:An infrared sensor system is set up so that two sensors start timing when the infrared ... Determine the average acceleration during each time interval. c. ... the ground with a an initial velocity of 169 m/s at an angle of 23.0 O above the horizontal; a. ... A 4.00 kg mass is sitting at rest on a horizontal surface.
Explanation: