Answer:
jdjdjdhjxjxjchxjxjkxjxjxhxnxkjcjcjcj
Explanation:
sorry i just need point lolllllllllll
It allows a scientist to understand the history of metamorphic rock by estimating the temperature, depth, and pressure at which a rock undergoes metamorphism.
Hope that helped!
Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol
1. Rapid combustion - <span>used in engines and rockets souring. Large amount of energy produced.
</span>2. R<span>espiration - </span><span>a type of slow combustion. Organic matter is transfered into energy and carbon dioxide.
3. Soaring - a chemical change. A</span>cidification of milk into soured milk.<span>
4. Oxidation - electron loss when combining with another element. Metals gave electrons to nonmetals and became cations.
5. C</span>alcium - element in bone which absorbs X-rays. Calcium increases the photoelectric effect<span> which increase absorption of X-rays.
6. P</span>hotosynthesis reaction in which the product is glucose. Plants produce glucose from carbon dioxide and water.