Answer:
Glycogen is the primary energy source for muscle and liver cells.
Explanation:
Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.
Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.
Answer:
I'm completely sure that the answer is: The most important rating for batteries is the ampere-hour rating. Ampere-hour is the battery discharge rating. It's used as a measure of charge in your device. It indicates how long your device will work without charging.
Explanation:
Hope this helped!
Answer:
You have to know the basic mechanics to help you correctly use the motorcycle, and you also have to have the right mindset - knowing you can ride it, and having determination. All of these factors are the primary mental skills you need for riding a motorcycle.
Answer:
heat loss per 1-m length of this insulation is 4368.145 W
Explanation:
given data
inside radius r1 = 6 cm
outside radius r2 = 8 cm
thermal conductivity k = 0.5 W/m°C
inside temperature t1 = 430°C
outside temperature t2 = 30°C
to find out
Determine the heat loss per 1-m length of this insulation
solution
we know thermal resistance formula for cylinder that is express as
Rth =
.................1
here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity
so
heat loss is change in temperature divide thermal resistance
Q = 
Q = 
Q = 4368.145 W
so heat loss per 1-m length of this insulation is 4368.145 W
Answer:
The heater load =35 KJ/kg
Explanation:
Given that
At initial condition
Temperature= 15°C
RH=80%
At final condition
Temperature= 50°C
We know that in sensible heating process humidity ratio remain constant.
Now from chart
At temperature= 15°C and RH=80%

At temperature= 50°C


The heater load = 73 - 38 KJ/kg
The heater load =35 KJ/kg