1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
2 years ago
15

For laminar flow of air over a flat plate that has a uniform surface temperature, the curve that most closely describes the vari

ation of the local heat transfer coefficient with position along the plate is
Engineering
1 answer:
Aliun [14]2 years ago
3 0

This question is incomplete, the missing diagram is uploaded along this answer below;

Answer:

from the diagram, the curve that most closely describes the variation of the local heat transfer coefficient with position along the plate is Option D

Explanation:

Given the data in the question;

We write the expression for the local Nusselt number for Laminar flow over the flat plate;

Nu = C(Re_x)^{0.5 (Pr)^{1/3

Nu = C(\frac{Vx}{v})^{0.5} (Pr)^{1/3

\frac{h_xx}{k} = C(\frac{V}{v})^{0.5}  (Pr)^{1/3  (x)^{0.5

h_x = \frac{1}{x^{1/2}}

Next we write down the expression for the local heat flux from the plate with  uniform surface temperature;

q = h_xA( T_s - T∞ )

q ∝ h_x

∴

q ∝  \frac{1}{x^{1/2}}

The local heat flux decreases with the position as it is inversely proportional to the square root of the position from the leading edge and it will not be zero at the end of the plate.

Therefore, from the diagram, the curve that most closely describes the variation of the local heat transfer coefficient with position along the plate is Option D

You might be interested in
14. A large car fire presents the possibility of
dexar [7]

Answer:

Both of the above

Explanation:

5 0
2 years ago
Read 2 more answers
A parallel plates capacitor is filled with a dielectric of relative permittivity ε = 12 and a conductivity σ = 10^-10 S/m. The c
monitta

Answer:

t = 1.06 sec

Explanation:

Once disconnected from the battery, the capacitor discharges through the internal resistance of the dielectric, which can be expressed as follows:

R = (1/σ)*d/A, where d is is the separation between plates, and A is the area of one of  the plates.

The capacitance C , for a parallel plates capacitor filled with a dielectric of a relative permittivity ε, can be expressed in this way:

C = ε₀*ε*A/d = 8.85*10⁻¹² *12*A/d

The voltage in the capacitor (which is proportional to the residual charge as it discharges through the resistance of the dielectric) follows an exponential decay, as follows:

V = V₀*e(-t/RC)

The product RC (which is called the time constant of the circuit) can be calculated as follows:

R*C = (1/10⁻¹⁰)*d/A*8.85*10⁻¹² *12*A/d

Simplifying common terms, we finally have:

R*C = 8.85*10⁻¹² *12 / (1/10⁻¹⁰) sec = 1.06 sec

If we want to know the time at which the voltage will decay to 3.67 V, we can write the following expression:

V= V₀*e(-t/RC) ⇒ e(-t/RC) = 3.67/10 ⇒ -t/RC = ln(3.67/10)= -1

⇒ t = RC = 1.06 sec.

3 0
3 years ago
The dam cross section is an equilateral triangle, with a side length, L, of 50 m. Its width into the paper, b, is 100 m. The dam
lisabon 2012 [21]

Answer:

Explanation:

In an equilateral trinagle the center of mass is at 1/3 of the height and horizontally centered.

We can consider that the weigth applies a torque of T = W*b/2 on the right corner, being W the weight and b the base of the triangle.

The weigth depends on the size and specific gravity.

W = 1/2 * b * h * L * SG

Then

Teq = 1/2 * b * h * L * SG * b / 2

Teq = 1/4 * b^2 * h * L * SG

The water would apply a torque of elements of pressure integrated over the area and multiplied by the height at which they are apllied:

T1 = \int\limits^h_0 {p(y) * sin(30) * L * (h-y)} \, dy

The term sin(30) is because of the slope of the wall

The pressure of water is:

p(y) = SGw * (h - y)

Then:

T1 = \int\limits^h_0 {SGw * (h-y) * sin(30) * L * (h-y)} \, dy

T1 = \int\limits^h_0 {SGw * sin(30) * L * (h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {h^2 - 2*h*y + y^2} \, dy

T1 = SGw * sin(30) * L * (h^2*y - h*y^2 + 1/3*y^3)(evaluated between 0 and h)

T1 = SGw * sin(30) * L * (h^2*h - h*h^2 + 1/3*h^3)

T1 = SGw * sin(30) * L * (h^3 - h^3 + 1/3*h^3)

T1 = 1/3 * SGw * sin(30) * L * h^3

To remain stable the equilibrant torque (Teq) must be of larger magnitude than the water pressure torque (T1)

1/4 * b^2 * h * L * SG > 1/3 * SGw * sin(30) * L * h^3

In an equilateral triangle h = b * cos(30)

1/4 * b^3 * cos(30) * L * SG  > 1/3 * SGw * sin(30) * L * b^3 * (cos(30))^3

SG > SGw * 4/3* sin(30) * (cos(30))^2

SG > 1/2 * SGw

For the dam to hold, it should have a specific gravity of at leas half the specific gravity of water.

This is avergae specific gravity, including holes.

6 0
2 years ago
An LED camping headlamp can run for 18 hours, powered by three AAA batteries. The batteries each have a capacity of 1000 mAh, an
KIM [24]

Answer:

a) the power consumption of the LEDs is 0.25 watt

b) the LEDs drew 0.0555 Amp current

Explanation:

Given the data in the question;

Three AAA Batteries;

<---- 1000mAh [ + -] 1.5 v ------1000mAh [ + -] 1.5 v --------1000mAh [ + -] 1.5 v------

so V_total = 3 × 1.5 = 4.5V

a) the power consumption of the LEDs

I_battery = 1000 mAh / 18hrs    { for 18 hrs}

I_battery = 1/18 Amp    { delivery by battery}

so consumption by led = I × V_total

we substitute

⇒ 1/18 × 4.5

P = 0.25 watt

Therefore the power consumption of the LEDs is 0.25 watt

b) How much current do the LEDs draw

I_Draw = I_battery = 1/18 Amp = 0.0555 Amp

Therefore the LEDs drew 0.0555 Amp current

5 0
2 years ago
n the Spring of 2015, three utility companies in the Ukraine received email purporting to come from Ukraine's parliament, the Ra
Tresset [83]

Answer:

Trojan horse

Explanation:

A trojan horse attack is a type of malware that misleads users, as it appears unsuspicious at first, but actually presents a threat to the user. A common example is that of an email that contains a malicious attachment. Another common example is that of a fake advertisement. The name comes from the Greek story of the Trojan horse that led to the fall of the city of Troy.

5 0
3 years ago
Other questions:
  • 1. Under what conditions can soils be chemically stabilized?
    8·1 answer
  • Question 5
    7·2 answers
  • What type of footwear protects your toes from falling objects and being crushed?
    6·2 answers
  • One type of illumination system consists of rows of strip fluorescents and a ceiling that will transmit light. For this system t
    15·1 answer
  • Ayuda con este problema de empuje y principio de arquimedes.
    6·1 answer
  • What have you learned about designing solutions? How does this apply to engineering? Think of some engineering solutions that st
    15·1 answer
  • Guess the output of this code: print( (3**2)//2)​
    13·1 answer
  • Suppose you are asked to design an office building. Explain what type of drawing you would use and why.
    8·2 answers
  • Tech A says that a mechanical pressure regulator exhausts excess fluid back to the transmission pan. Tech B says that if the tra
    9·1 answer
  • Find the altitude of the right cylinder of maximum convex surface that can be inscribed in a given sphere.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!