1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
2 years ago
12

Draw the free-body diagram of the beam which supports the 80-kg load and is supported by the

Engineering
1 answer:
Sauron [17]2 years ago
5 0

The free-body diagram of the beam which supports the 80-kg load and is supported by the pin at A can be seen in the image attached below.

The first image shows the diagram of the beam and the second image shows the free-body diagram of the beam.

The resolution of forces in the system is well understood by the principle of equilibrium where a stationary body will remain balanced when subject to parallel forces provided that the total sum of the overall external forces is zero.

The free-body diagram is a graphical representation used to visualize the forces applied to an object.

The equilibrium of forces on the x-axis is:

\mathbf{\sum F_x  = 0}

The equilibrium of forces on the y-axis is:

\mathbf{\sum F_y = 0}

The equilibrium condition at any point is:

\mathbf{\sum M = 0}

From the free body diagram attached in the second image below,

  • the horizontal reaction is located at point A as \mathbf{ A_x}
  • the vertical reaction is  located at point A  as \mathbf{A_y}
  • the tension =  T
  • the weight = W

Therefore, we can conclude that the free-body diagram of the beam which supports the 80-kg load and is supported by the pin at A can be seen in the image attached below.

Learn more about the free-body diagram here:

brainly.com/question/19345060?referrer=searchResults

You might be interested in
What is the mass of a brass axle that has a volume of 0.318 cm? ​
NeX [460]

Answer:

2.7g

Explanation:

the mass of a brass axle that has a volume of 0.318 cm is 2.7g.

8 0
3 years ago
What is the maximal coefficient of performance of a refrigerator which cools down 10 kg of water (and then ice) to -6C. Upper he
inysia [295]

Given:

Temperature of water, T_{1} = -6^{\circ}C =273 +(-6) =267 K

Temperature surrounding refrigerator, T_{2} = 21^{\circ}C =273 + 21 =294 K

Specific heat given for water, C_{w} = 4.19 KJ/kg/K

Specific heat given for ice, C_{ice} = 2.1 KJ/kg/K

Latent heat of fusion,  L_{fusion} = 335KJ/kg

Solution:

Coefficient of Performance (COP) for refrigerator is given by:

Max COP_{refrigerator} = \frac{T_{2}}{T_{2} - T_{1}}

= \frac{267}{294 - 267} = 9.89

Coefficient of Performance (COP) for heat pump is given by:

Max COP_{heat pump} = \frac{T_{1}}{T_{2} - T_{1}}\frac{294}{294 - 267} = 10.89

6 0
3 years ago
List and describe three classifications of burns to the body.
DiKsa [7]

AnswerWhat Are the Classifications of Burns? Burns are classified as first-, second-, or third-degree, depending on how deep and severe they penetrate the skin's surface. First-degree burns affect only the epidermis, or outer layer of skin. The burn site is red, painful, dry, and with no blisters.

Explanation:

8 0
3 years ago
Read 2 more answers
It is said that Archimedes discovered his principle during a bath while thinking about how he could determine if KingHiero‘s cro
Rudiy27

Answer:

the crown is false densty= 12556kg/m^3[/tex]

Explanation:

Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.

W=mg

W=weight(N)=31.4N

M=Mass

g=gravity=9.81m/S^2

solving for M

m=W/g

m=\frac{31.4N}{9.81m/S^2}=3.2kg

The second step is find the volume of crown  remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water

F=mg-\alpha  V g

Where

F=weight in water=28.9N

m=mass of crown=3.2kg

g=gravity=9.81m/S^2

α=density of water=1000kg/m^3

V= crown´s volume

solving for V

V=\frac{mg-F }{g \alpha } =\frac{(3.2)(9.81)-28.9}{9.81(1000)} =0.000254m^3

finally, we remember that the density is equal to the index between mass and volume

\alpha =\frac{m}{v} =\frac{3.2}{0.000254} =12556kg/m^3

To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.

1.weigh the crown in the air and find the mass

2. put water in a cylindrical bucket and measure its height with a ruler.

3. Put the crown in the bucket and measure the new water level with a ruler.

4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.

5. find density by dividing mass by volume

7 0
3 years ago
An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. The
Mila [183]

Answer:

a) Current drawn by the toaster = 15A

Current drawn by the electric frying pan = 11.67A

Current drawn by the lamp = 0.625A

b) This combination will blow the 15A fuse as the total current requirement for this setup exceeds the 15A rating of the fuse.

Explanation:

a) For parallel connection, there exists, the same voltage and different currents across all the devices.

Voltage cross each of the 3 devices = outlet voltage of 120V

From their respective power rating, current drawn by each device will be calculated.

P = IV

For the toaster, P = 1800 W, V = 120V

I = 1800/120 = 15A

For the electric frying pan, P = 1400 W, V = 120 V

I = 1400/120 = 11.67 A

For the lamp, P = 75 W, V = 120V

I = 75/120 = 0.625 A

b) Total current in a parallel connection setup = Sum total of all the currents.

Total current drawn by all 3 devices = 15 + 11.67 + 0.625 = 27.295A = 27.3 A

This total current requirement surpasses the 15A current rating of the fuse, therefore, this combination will blow the fuse.

Hope this Helps!!!

6 0
3 years ago
Other questions:
  • What is the maximum thermal efficiency possible for a power cycle operating between 600P'c and 110°C? a). 47% b). 56% c). 63% d)
    15·1 answer
  • The flatbed truck carries a large section of circular pipe secured only by the two fixed blocks A and B of height h. The truck i
    14·2 answers
  • Give the approximate temperature at which creep deformation becomes an important consideration for each of the following metals:
    5·1 answer
  • A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
    8·1 answer
  • The concrete canoe team does some analysis on their design and calculates that they need a compressive strength of 860 psi. They
    15·1 answer
  • What are the benefits of using a multi view sketch to communicate a design
    14·1 answer
  • How many astronauts work<br> in the International Space Station
    7·1 answer
  • The three suspender bars AB, CD, and EF are made of A-36 steel and have equal cross-sectional areas of 500 mm2. Determine the av
    9·1 answer
  • The most important rating for batteries is the what
    11·1 answer
  • The following two DC motors are to be compared for certain application:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!