Answer:
L= 312.75 mm
Explanation:
given data
elastic modulus E = 106 GPa
cross-sectional diameter d = 3.9 mm
tensile load F = 1660 N
maximum allowable elongation ΔL = 0.41 mm
to find out
maximum length of the specimen before deformation
solution
we will apply here allowable elongation equation that is express as
ΔL =
....................1
put here value and we get L
L = 
solve it we get
L = 0.312752 m
L= 312.75 mm
Answer: Power
Explanation:
The rate at which work is done or the amount of work done based on a period of time is referred to as power.
Power can also be defined as the amount of energy that is being transferred per unit time. The unit of power is one joule per second or simply called the watt.
To solve this problem we will use the Froude number that relates the Forces of Inertia with the Forces of Gravity. There will be jump in the downstream only if Froude Number (Fr) is greater than 1 at upstream. Our values are given as,

Then the velocity would be:

The number of Froude is given as,

Where,
V = Velocity
g = Gravity
D = Diameter
Replacing we have that

There will be no Jump, correct answer is B.
Answer:
248.756 mV
49.7265 µA
Explanation:
The Thevenin equivalent source at one terminal of the bridge is ...
voltage: (100 V)(1000/(1000 +1000) = 50 V
impedance: 1000 || 1000 = (1000)(1000)/(1000 +1000) = 500 Ω
The Thevenin equivalent source at the other terminal of the bridge is ...
voltage = (100 V)(1010/(1000 +1010) = 100(101/201) ≈ 50 50/201 V
impedance: 1000 || 1010 = (1000)(1010)/(1000 +1010) = 502 98/201 Ω
__
The open-circuit voltage is the difference between these terminal voltages:
(50 50/201) -(50) = 50/201 V ≈ 0.248756 V . . . . open-circuit voltage
__
The current that would flow is given by the open-circuit voltage divided by the sum of the source resistance and the load resistance:
(50/201 V)/(500 +502 98/201 +4000) = 1/20110 A ≈ 49.7265 µA