Answer:
Mount Katahdin, 5276 feet above sea level
= Google
Answer:
The heat loss rate through one of the windows made of polycarbonate is 252W. If the window is made of aerogel, the heat loss rate is 16.8W. If the window is made of soda-lime glass, the heat loss rate is 1190.4W.
The cost associated with the heat loss through the windows for an 8-hour flight is:
For aerogel windows: $17.472 (most efficient)
For polycarbonate windows: $262.08
For soda-lime glass windows: $1,238.016 (least efficient)
Explanation:
To calculate the heat loss rate through the window, we can use a model of heat transmission by conduction throw flat wall. Using unidimensional Fourier law:

In this case:

If we replace the data provided by the problem we get the heat loss rate through one of the windows of each material (we only have to change the thermal conductivities).
To obtain the thermal conductivity of the soda-lime glass we use the graphic attached to this answer (In this case for soda-lime glass k₃₀₀=0.992w/m·K).
To calculate the cost associated with the heat loss through the windows for an 8-hour flight we use this formula (using the heat loss rate calculated in each case):

Answer:
Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.
Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.
Answer: Pi= 4 - 4/3 + 4/5 - 4/7 + 4/9 ...
Explanation:
Is the same as the example,
If Π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 ...
Then
(Π/4 )*4= 4*(1 - 1/3 + 1/5 - 1/7 + 1/9 ...)
Π =4 - 4/3 + 4/5 - 4/7 + 4/9 ...
The way to write this is
Sum(from n=0 to n=inf) of (-1)^n 4/(2n+1)
(photo)