Answer:
(a) Increases
(b) Increases
(c) Increases
(d) Increases
(e) Decreases
Explanation:
The tensile modulus of a semi-crystalline polymer depends on the given factors as:
(a) Molecular Weight:
It increases with the increase in the molecular weight of the polymer.
(b) Degree of crystallinity:
Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.
(c) Deformation by drawing:
The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.
(d) Annealing of an undeformed material:
This also results in an increase in the tensile strength of the material.
(e) Annealing of a drawn material:
A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.
Answer:
576.21kJ
Explanation:
#We know that:
The balance mass 
so, 

#Also, given the properties of water as;

#We assume constant properties for the steam at average temperatures:
#Replace known values in the equation above;
#Using the mass and energy balance relations;

#We have
: we replace the known values in the equation as;

#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ
They do in fact heat up while receiving energy.
The current IDS is greater than 0 since the VGS has induced an inversion layer and the transistor is operating in the saturation region.
<u>Explanation:</u>
- Since
>
because
> Vt. - By the saturation region the MOSFET is operating.
- A specific source voltage and gate of NMOS, the voltage get drained during the specific level, the drain voltage is rises beyond where there is no effect of current during saturated region.
- MOSFET is a transistor which is a device of semiconductor vastly used for the electronic amplifying signals and switching in the devices of electronics.
- The core of this is integrated circuit.
- It is fabricated and designed in an individual chips due to tiny sizes.