Answer:
73325J
Explanation:
Given parameters:
Mass of water = 0.5kg
Initial temperature = 30°C
Final temperature = 65°C
Specific heat capacity = 4190J/kg°C
Unknown:
Amount of energy absorbed = ?
Solution:
The amount of energy absorbed can be derived using the expression below;
H = m c Δt
H is the amount of energy
m is the mass
c is the specific heat
Δt is the change in temperature
H = 0.5 x 4190 x (65 - 30 )
H = 73325J
Answer:
I am not really sure but i think its option 2
Explanation:
The correct answer is A.
A power station works on the principle of boiling water to create steam, which turns a turbine, generating a potential difference in a transformer with the magnets. The transformer is connected to a circuit, which hence induces a current, generating power.
Answer:
f = 3.09 Hz
Explanation:
This is a simple harmonic motion exercise where the angular velocity is
w² =
to find the constant (k) of the spring, we use Hooke's law with the initial data
F = - kx
where the force is the weight of the body that is hanging
F = W = m g
we substitute
m g = - k x
k =
we calculate
k =
k = 3.769 10² m
we substitute in the first equation
w² =
w = 19.415 rad / s
angular velocity and frequency are related
w = 2πf
f =
f = 19.415 / 2pi
f = 3.09 Hz
Answer:
805.48N/m
Explanation:
According to Hookes law
F = Ke
F is the force = mg
F = 2.4×9.8 = 23.52N
e is the extension = 2.92cm = 0.0292m
Force constant K = F/e
K = 23.52/0.0292
K = 805.48N/m
Hence the force constant of the spring is 805.48N/m