1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
3 years ago
7

A girl is floating in a freshwater lake with her head just above the water. If she weighs 610 N, what is the volume of the subme

rged part of her body?
Physics
1 answer:
Elden [556K]3 years ago
8 0

Answer:

The volume of the submerged part of her body is 0.0622m^{3}

Explanation:

Let's define the buoyant force acting on a submerged object.

In a submerged object acts a buoyant force which can be calculated as :

B=ρ.V.g

Where ''B'' is the buoyant force

Where ''ρ'' is the density of the fluid

Where ''V'' is the submerged volume of the object

Where ''g'' is the acceleration due to gravity

Because the girl is floating we can state that the weight of the girl is equal to the buoyant force.

We can write :

W_{girl}=B (I)

Where ''W'' is weight

⇒ If we consider ρ = 1000\frac{kg}{m^{3}} (water density) and g=9.81\frac{m}{s^{2}} and replacing this values in the equation (I) ⇒

B=W_{girl}

B=610N

ρ.V.g = 610N

1000\frac{kg}{m^{3}}.V.(9.81\frac{m}{s^{2}})=610N (II)

The force unit ''N'' (Newton) is defined as

N=kg.\frac{m}{s^{2}}

Using this in the equation (II) :

(9810\frac{N}{m^{3}}).V =610N

V=\frac{610N}{9810\frac{N}{m^{3}}}

V=0.0622m^{3}

We find that the volume of the submerged part of her body is 0.0622m^{3}

You might be interested in
A car is 200 m from a stop sign and traveling toward the sign at 40.0 m/s. At this time, the driver suddenly realizes that she m
victus00 [196]

Answer:

The acceleration of the car will be a=9600m/sec^

Explanation:

We have given that distance from stop sign s = 200 m

Time t = 0.2 sec

We have to find the constant acceleration

Now from second equation of motion s=ut+\frac{1}{2}at^2

200=40\times 0.2+\frac{1}{2}\times a\times 0.2^2

a=9600m/sec^

So the acceleration of the car will be a=9600m/sec^

6 0
3 years ago
An object is located 51 millimeters from a diverging lens. The object has a height of 13 millimeters and the image height is 3.5
12345 [234]
You would get 13.7 
mi/51mm=3.5mm/13mm
by solving it you will B13.7mm
3 0
3 years ago
Read 2 more answers
Which one of the following lines best illustrates personification?
Mrrafil [7]
The answer would be A, because the wind cannot complain, therefore it has been given a human quality.
7 0
3 years ago
Read 2 more answers
Which evidence best supports the theory that the universe began with a massive explosion?
Ivanshal [37]
I think it's b. But I'm not sure
5 0
3 years ago
Read 2 more answers
Assume this 1.20-mm-radius copper wire is electrically neutral in the Earth reference frame, in which it is at rest and carrying
agasfer [191]

Answer:

The charge density in the system is 4.25*10^4C/m

Explanation:

To solve this problem it is necessary to keep in mind the concepts related to current and voltage through the density of electrons in a given area, considering their respective charge.

Our data given correspond to:

r=1*10^{-3}m\\v = 5.2*10^{-4}m/s\\e= 1.6*10^{-19}C

We need to asume here the number of free electrons in a copper conductor, at which is generally of 8.5 *10^{28}m^{-3}

The equation to find the current is

I = VenA

Where

I =Current

V=Velocity

A = Cross-Section Area

e= Charge for a electron

n= Number of free electrons

Then replacing,

I = (5.2*10^{-4})(1.6*10^{-19})(88.5 *10^{28})(\pi(1*10^{-3})^2)

I= 22.11a

Now to find the linear charge density, we know that

I = \frac{Q}{t} \rightarrow Q = It

Where:

I: current intensity

Q: total electric charges

t: time in which electrical charges circulate through the conductor

And also that the velocity is given in proportion with length and time,

V_d = \frac{l}{t} \rightarrow l = V_d t

The charge density is defined as

\lambda = \frac{Q}{l}\\\lambda = \frac{It}{V_d t}\\\lambda = \frac{I}{V_d}

Replacing our values

\lambda = \frac{22.11}{5.20*10{-4}}

\lambda= 4.25*10^4C/m

Therefore the charge density in the system is 4.25*10^4C/m

5 0
3 years ago
Other questions:
  • Please answer this.
    12·2 answers
  • Can a small child play with fat child on the seesaw?Explain how?
    14·2 answers
  • Define gravitational field
    7·1 answer
  • Which solute will dissolve first in the illustration?
    15·1 answer
  • A 500N person stands 2.5m from a wall against which a horizontal beam is attached. The beam is 6m long and weighs 200N. A cable
    12·1 answer
  • 1) For a positive point charge, the lines radiate ………. . While, for a negative point charge, the lines converge …………. .
    9·1 answer
  • Determine el valor de la potencia electrica que experimente un circuito cual se somete a 120 voltios emitidos por accion de las
    15·1 answer
  • An alarm clock is dropped off the edge of a tall building. You, standing directly under it, hear a tone of 1350 Hz coming from t
    15·1 answer
  • 1.The lunch lady pushes a 100 kg zombie with 300 N of force. How much is the zombie accelerated?
    12·1 answer
  • एक वाक्य में उत्तर लिखिए : 1. आज किसको बचाने की मांग है? 2. जीव कब तक जगत में रह सकता है? १. कवि किसको शुद्ध रखने की बात करते है
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!