You can’t solve it because you don’t have c in the question
The elastic potential energy stored in the car's spring during the process is 3.75 J
<h3>Determination of the spring constant</h3>
From the question given above, the following data were obtained:
K = F/e
K = 15 / 0.5
K = 30 N/m
<h3>Determination of the potential energy</h3>
- Spring constant (K) = 30 N/m
PE = ½Ke²
PE = ½ × 30 × 0.5²
PE = 15 × 0.25
PE = 3.75 J
Therefore, the elastic potential energy stored in the car's spring during the process is 3.75 J
Learn more about energy stored in spring:
brainly.com/question/4280346
Answer:
I_v = 2,700 W / m^2
I_m = 610 W / m^2
I_s = 16 W / m^2
Explanation:
Given:
- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W
- Radius of Venus r_v = 1.08 * 10^11 m
- Radius of Mars r_m = 2.28 * 10^11 m
- Radius of Saturn r_s = 1.43 * 10^12 m
Find:
Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.
Solution:
- We know that Power is related to intensity and surface area of an object follows:
I = P / 4*pi*r^2
Where, A is the surface area of a sphere models the atmosphere around the planets.
a)
- The intensity at the surface of Venus is calculated as:
I_v = P_s / 4*pi*r^2_v
I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2
I_v = 2,700 W / m^2
b)
- The intensity at the surface of Mars is calculated as:
I_m = P_s / 4*pi*r^2_m
I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2
I_m = 610 W / m^2
c)
- The intensity at the surface of Saturn is calculated as:
I_s = P_s / 4*pi*r^2_s
I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2
I_s = 16 W / m^2
Answer:
The gravity of the sun and the planets works together with the inertia to create the orbits and keep them consistent. The gravity pulls the sun and the planets together, while keeping them apart. The inertia provides the tendency to maintain speed and keep moving. The planets want to keep moving in a straight line because of the physics of inertia. However, the gravitational pull wants to change the motion to pull the planets into the core of the sun. Together, this creates a rounded orbit as a form of compromise between the two forces.
Explanation:
Hope this answer helps you....
Answer:
exoplanets is any planet beyond our solar system.