Answer:
<h2>20 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>20 m/s²</h3>
Hope this helps you
Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.
Answer:
The direction a wave propagates is perpendicular to the direction it oscillates for transverse waves. A wave does not move mass in the direction of propagation; it transfers energy.
Explanation:
Hey,
I think the answer's are 1,3
Hope this helpss
~Girlygir101~
Answer:
Explanation:
a) Magnification = image height / object height = -9 / 18 = -0.5
b) Magnification = - image distance / object distance = -0.5
so image distance = 0.5 object distance
1/focal length = 1/image distance + 1/object distance
1/6 = 1/(0.5 object distance) + 1/object distance
object distance = 18.0 cm
c) Image appears behind the lens.