That is a really good question, cheese is stretchy when it is hot is because when you heat it up, it liquefies which makes it stretch. it doesn't stretch when it is cold because it is a solid and solids usually do not stretch.
1. The velocity decreases, and the kinetic energy decreases.
2. An increase in temperature difference between the inside and outside of the building.
3. The total kinetic energy remains the same.
4. 76,761 J
5. The energy loss must increase.
In this problem,
Applied force(F) = 10 N
The object’s mass (m) is 5 kg.
Having said that,
An object’s force is equal to the product of its mass and the acceleration it experiences as a result of the applied force.
i.e., Mass + Acceleration = Force (a)
F= m×a
Therefore,
A= F÷m
A= (10÷5) m/sec²
A= 2 m/sec²
Consequently, the object’s acceleration,
A=2 m/sec²
Concept of force and acceleration:
This states that the rate of velocity change of an object is directly proportional to the applied force and moves in the direction of the applied force.
It can be expressed mathematically as force (N) = mass (kg) x acceleration (m/s2). Therefore, an object with constant mass will accelerate in direct proportion to the applied force.
To know more about such problems, visit:
brainly.com/question/16743612
#SPJ4
Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.